Modeling Change of Topographic Spatial Structures with DEM Resolution Using Semi-Variogram Analysis and Filter Bank
نویسندگان
چکیده
Abstract: In this paper, the way topographic spatial information changes with resolution was investigated using semi-variograms and an Independent Structures Model (ISM) to identify the mechanisms involved in changes of topographic parameters as resolution becomes coarser or finer. A typical Loess Hilly area in the Loess Plateau of China was taken as the study area. DEMs with resolutions of 2.5 m and 25 m were derived from topographic maps with map scales of 1:10,000 using ANUDEM software. The ISM, in which the semi-variogram was modeled as the sum of component semi-variograms, was used to model the measured semi-variogram of the elevation surface. Components were modeled using an analytic ISM model and corresponding landscape components identified using Kriging and filter bank analyses. The change in the spatial components as resolution became coarser was investigated by modeling upscaling as a low pass linear filter and applying a general result to obtain an analytic model for the scaling process in terms of semi-variance. This investigation demonstrated how topographic structures could be effectively characterised over varying scales using the ISM model for the semi-variogram. The loss of information in the short range components with resolution is a major driver for the observed change in derived topographic parameters such as slope. This paper has helped to quantify how information is distributed among scale components and how it is lost in natural terrain surfaces as resolution becomes coarser. It is a basis for further applications in the field of geomorphometry.
منابع مشابه
Effects of Digital Elevation Models (DEM) Spatial Resolution on Hydrological Simulation
Digital Elevation Model is one of the most important data for watershed modeling whit hydrological models that it has a significant impact on hydrological processes simulation. Several studies by the Soil and Water Assessment Tool (SWAT) as useful Tool have indicated that the simulation results of this model is very sensitive to the quality of topographic data. The aim of this study is evaluati...
متن کاملارزیابی مرفومتری، مدلسازی و استخراج آبراههها از مدل رقومی ارتفاع (DEM) با استفاده از مدل زیرپیکسل جاذبه
The aim of this study was to evaluate the effect of increasing DEM spatial resolution on the assessment of the morphometric characteristics of waterways, as well as analysis and modeling of it by using RS and GIS techniques. In this study, which was carried out in the south of Darab city DEM 90 m (as one of the most usable data in waterway modeling), increase spatial resolution of DEM attractio...
متن کاملAssessment Effect of the Spatial Resolution of Digital Elevation Model on Daily Discharge Estimation of Arazkuseh Watershed Using SWAT Model
The spatial quality of the Digital Elevation Model (DEM) has a great effect on the Soil and Water Assessment Tool (SWAT) semi-distributed model. The purpose of this study was to evaluate the effect of spatial accuracy of three DEMs with spatial resolutions of 10, 50 and 200 m on the results of daily discharge simulation in the Arazkuseh subwatershed located in Gorganroud watershed, Golestan pro...
متن کاملModeling the effects of elevation data resolution on the performance of topography-based watershed runoff simulation
The spatial uncertainty of a topography based rainfall runoff model (TOPMODEL) is addressed in this study to assess its variability in simulating watershed hydrologic response with regards to the change of digital elevation model (DEM) resolution. Twelve DEM realizations of different grid sizes ranging from 30 m to 3000 m for each of two case watersheds are used for comparative examinations. Th...
متن کاملSoil Erosion Modeling For Managing Natural Hazards with Determining Four adequate Cell Size Factor of Slope Length
Soil loss erosion is one of the most serious environmental problems (widespread globally), which is a menace to sustainable ecosystems and agriculture. As the previous studies show, the world’s highest soil loss rates due to erosion are in three continents, i.e. Asia, Africa, and South America. A new method was proposed to statistically evaluate the most appropriate cell size for LS factor inpu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ISPRS Int. J. Geo-Information
دوره 5 شماره
صفحات -
تاریخ انتشار 2016